1147

CRYSTAL SYMMETRY OF THE CHLORATE ANION IN HOST STRUCTURES

Bohumil HÁJEK, Alexander MUCK and Olga SMRČKOVÁ Department of Inorganic Chemistry, Praque Institute Chemical of Technology, 166 28 Praque 6

Received April 27th, 1984

The infrared spectra were studied for the pyramidal ClO_3^- anion (C_{3v}) embedded in host structures of various symmetries. Small amounts of NaClO₃ or KClO₃ were incorporated in NaBrO₃ (T^4) , NaIO₃ (D_{16}^{2h}) , KBrO₃ (C_{3v}^5) , and KIO₃ (C_1^1) structures. The ClO₃ anion was found to assume the site symmetry of the host structure anion, *i.e.* $C_3 C_s$, C_{3v} , and C_1 , respectively, in accordance with the results of group analysis.

Interpretation of the infrared spectra of inorganic polycrystalline substances from the point of view of their crystal symmetry is complicated by the mutual vibrational interaction of the particles in the elementary cell. This dynamic effect can be eliminated by diluting the particle studied in a host crystal structure. Isostructural substances give rise to mixed crystals. For substances with different crystal structures, the mixed crystal formation is not feasible, small amounts of foreign ions, however, can be embedded in the host structure. Their site symmetry can be studied by vibrational spectroscopy. The aim of this work was to investigate site symmetry of the $ClO_3^$ anion in host structures of the T^4 , D_{2h}^{16} , C_{3v}^5 and C_1^1 symmetries.

EXPERIMENTAL

Samples of NaBrO₃, NaIO₃, KBrO₃, and KIO₃ containg NaClO₃ or KClO₃['] in concentrations of 5 and 7 mol.% were prepared by mixing the chemicals of reagent grade purity in the appropriate proportions, dissolving them in water, and concentrating the solution for crystallization.

The infrared spectra were measured over the region of 200-4000 cm⁻¹ on a Perkin-Elmer 325 spectrophotometer in KBr disks 13 mm in diameter.

RESULTS AND DISCUSSION

The crystallographic data of the pure starting substances were taken from the literature¹⁻⁵. The own symmetry of the ClO_3^- , BrO_3^- , and IO^- pyramidal anions is C_{3v} . The space groups, numbers of formula units in the elementary cells (Z), and the site symmetries of the XO_3^- anions in the substances used are given in Table I. NaClO₃ and NaBrO₃ crystallize in the cubic system, NaIO₃, KBrO₃, and KClO₃ in the orthorhombic, trigonal, and monoclinic systems, respectively. KIO₃ crystallizes in several modifications⁶ in dependence on temperature over the region of -190to +212°C; the C_{3v}^5 and C_1^1 structures have been reported³⁻⁵ at room temperature.

The infrared spectra of the ClO_3^- , BrO_3^- , and IO_3^- anions in their sodium and potassium salts were interpreted by Sterzel and Shnee⁷, who used the ¹⁸O substitution for the study. Lowering in the mutual influencing of the anions and its manifestation in the Raman spectra were studied on NaClO₃-NaBrO₃ mixed crystals⁸. Present in concentrations as low as about 1 mol %, BrO₃⁻ exhibited the C₃ symmetry. ⁷⁹Br- $-^{81}$ Br isotopic splitting was observed in the spectra. The spectral patterns over the $v_1 - v_3$ vibrational region was examined for the BrO₃ anion embedded in an NaClO₃ host crystal in various concentrations⁹. The results were compared with those derived from the Raman spectra of RbClO₃-RbBrO₃ mixed crystals¹⁰. Also in this system the anions exhibited the C_3 symmetry. The occurrence of two absorptions in the region of the v_3 vibration were explained by the isotopic effect. The vibrations of ClO₃ were found more sensitive to environmental changes than those of BrO_3^- . The isotopic effects in the Raman spectra of NaClO₃, KClO₃, NaBrO₃, and KBrO₃ were discussed also in refs11,12.

Infrared Spectra

The crystallographic data given in Table I show that the possible symmetries of XO_3 anions accomodated in T^4 , D_{2h}^{16} , C_{2h}^2 , C_{3v}^5 , and C_1^1 lattices are C_3 , C_{3v} , C_s , and C_1 . The six normal vibrations of the XO_3^- anion of the own symmetry C_{3y} divide into the irreducible representations $2A_1 + 2E_2$, all infrared-active. The vibrational correlation between the own symmetry of the anions and their site symmetries in the

Space group	Z	Anion site symmetry	Ref.	
$T^4 - P2_1 3$	4	<i>C</i> ₃	1	
$T^{4} - P2_{1}^{3}$	4	•	1	
D_{2h}^{16} -Pnma	4		1,2	
$C_{2h}^{\bar{2}} - P2_1/m$	2		1	
C_{3y}^5 -R3m	1		1	
C_{3v}^5 -R3m	1 or 8		3, 4	
$C_1^1 - PI$	4	C_1	5	
	$C_{2h}^{2} - P2_1/m$ $C_{3v}^{5} - R3m$ $C_{3v}^{5} - R3m$	$\begin{array}{cccc} T^{4} - P2_{1}3 & 4 \\ D_{2h}^{16} - Pnma & 4 \\ C_{2h}^{2} - P2_{1}/m & 2 \\ C_{3v}^{5} - R3m & 1 \\ C_{3v}^{5} - R3m & 1 \\ or 8 \end{array}$	$T^4 - P2_1 3$ 4 C_3 $D_{2h}^{16} - Pnma$ 4 C_8 $C_{2h}^2 - P2_1 / m$ 2 C_8 $C_{3v}^5 - R3m$ 1 C_{3v} $C_{3v}^5 - R3m$ 1 or 8 C_{3v}	$T^4 - P2_1 3$ 4 C_3 1 $D_{2h}^{16} - Pnma$ 4 C_S 1, 2 $C_{2h}^2 - P2_1 / m$ 2 C_S 1 $C_{3v}^2 - R3m$ 1 C_{3v} 1 $C_{3v}^2 - R3m$ 1 C_{3v} 1 $C_{3v}^2 - R3m$ 1 or 8 C_{3v} 3, 4

TABLE I

^a At room temperature.

Collection Czechoslovak Chem, Commun. [Vol. 50] [1985]

structures in question, along with their IR activity, is shown in Table II. The wavenumbers for the ClO_3^- anion of NaClO₃ and KClO₃ each embedded in NaBrO₃, NalO₃, KBrO₃ and KIO₃ crystals are given in Table III.

Taking into account the theoretical correlations $C_{3v} \rightarrow C_3$, $C_{3v} \rightarrow C_s$, and $C_{3v} \rightarrow C_1$ (Table II), the absorption bands of the ClO₃⁻ anion of NaClO₃ in NaBrO₃ matrix (Table III) where both the host and the doping substance possess the T^4 structure indicate that the ClO₃⁻ anion occupies sites of C_3 symmetry. The infrared-active v_1 , v_2 , v_3 , and v_4 vibrations appear at 935, 610, 955 and 965, and 480 cm⁻¹, respectively. The splitting of the v_3 vibration is due to the isotopic effect (Table IV).

Correlation table^a $\begin{array}{c|cccc}
C_{3v} & C_3 & C_s & C_1 \\
\hline
2A_1 & 2A & 2A' & 2A \\
2E & 2E & 2(A' + A'') & 2(A + A)
\end{array}$

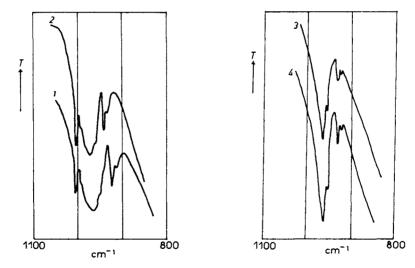
" All vibrations are infrared-active.

TABLE III

TABLE H

Band position (cm^{-1}) in the infrared spectra of the ClO₃ anion of NaClO₃ and KClO₃ in host crystals

Host crystal	<i>v</i> ₁	ν ₂	v ₃	v ₄
		NaClO	3	
NaBrO ₃	935	610	955 sh, 965	480
NaIO ₃	935 sh, 940	615 sh, 620	960 sh, 970, 990 sh, 1 005	490, 495
KBrO ₃	925 sh, 930	605 sh, 610	955 sh, 965	480 sh, 490
KIO ₃	935 sh, 940	620	960 sh, 970, 1 000	490
		KClO3		
NaBrO ₃	930 sh, 940	610 sh, 615	955 sh, 970	485
NaIO ₃	930 sh, 940	620	960 sh, 970, 990 sh, 1 005	485 sh, 495
KBrO ₃	925 sh, 930	605 sh, 610	955 sh, 965	490
KIO ₃	935 sh, 940	620	960 sh, 970, 1 005	490 sh, 495


Collection Czechoslovak Chem, Commun. [Vol. 50] [1985]

A similar result is obtained for KClO₃, with the C_{2h}^2 symmetry, embedded in the NaBrO₃ host lattice (T^4); the spectral patterns for the ClO₃⁻ ion again show that the anion assumes the C_3 site symmetry of the space group T^4 , hence, the site symmetry of the host lattice which is higher than that in the lattice of KClO₃ itself. The v_1 , v_2 and v_3 vibrational bands are split due to the isotopic effect; for the v_4 vibration the possible splitting is obscured by the near-by v_4 vibration of BrO₃⁻.

Fig 1 shows the infrared spectra of the ClO_3^- anion over the region of its v_1 and v_3 vibrations for the NaClO₃-NaIO₃ and KClO₃-NaIO₃ systems; the spectra display

TABLE IV Values of the ${}^{37}Cl - {}^{35}Cl$ isotopic effect for the ClO_3^- anion (C_{3y})

Symmetry species	Theoretical value	Experimental values				
		NaClO ₃ -NaBrO ₃ C_3 site	NaClO ₃ -KBrO ₃ C_{3v} site	$\frac{\text{KClO}_3 - \text{NaBrO}_3}{C_3 \text{ site}}$	$KClO_3-KBrO_3$ C_{3v} site	
A_1	0.990		0·986 (-0·6%)	$0.981 \ (-0.8\%)$	0.986(-0.6%)	
Ε	0.982	0.990 (+0.8%)	0.970(-2.2%)	0.985 (+0.3)	0.990(+0.8%)	

 v_1 and v_3 vibrations of the ClO₃⁻ anion, 1 NaClO₃-NaIO₃, 2 KClO₃-NaIO₃, 3 KClO₃-KBrO₃, 4 NaClO₃-KBrO₃

Collection Czechoslovak Chem. Commun. [Vol. 50] [1985]

the active v_1 , v_2 (A') and split degenerate v_3 and v_4 (A' + A") vibrations. The v_1 vibrational bands again are split due to the isotopic effect. The v_2 vibration in the NaIO₃ samples is not very marked. The split v_3 vibrational bands exhibit additional splitting by the isotopic effect (Table III). The experiments give evidence that in both cases the site symmetry of the ClO₃⁻ anion is C_s , which is the site symmetry of the IO₃⁻ ion in the NaIO₃ host structure (D_{2b}^{16}), although the crystal symmetries of NaClO₃ and KClO₃ themselves are different. Similarly, the ClO₃⁻ anion in the KBrO₃ host lattice assumes the site symmetry of the latter, namely, C_{3v} (Fig. 1). The v_1 , v_2 , and v_3 vibrational bands are markedly split on account of the isotopic effect.

In the NaClO₃-KIO₃ and KClO₃-KIO₃ systems the ClO₃⁻ anion exhibits the v_1 vibration (935 sh, 940 cm⁻¹) with isotopic splitting, and the v_2 vibration which is not very marked due to the low concentration of the minority component. The v_3 vibrational band is split into a broad band at 970 cm⁻¹ with an indistinct shoulder at 960 cm⁻¹, and a sharp band at 1 000 and 1 005 cm⁻¹, respectively. These facts indicate the C_1 symmetry for the ClO₃⁻ anion.

For KIO₃, two structures, viz. C_{3v}^5 and C_1^1 , have been reported at room temperature. Assuming that as before, CIO₃⁻ in KIO₃ matrix will respect the site symmetry of the host lattice, the C_{3v}^5 space group (C_{3v} site) can be ruled out; the C_1^1 space group thus suits for KIO₃.

The theoretical ${}^{37}\text{Cl}{-}^{35}\text{Cl}$ spectral isotopic effect for the ClO_3^- anion was evaluated by the product rule in terms of the kinematic G matrix, hence, as $(|G^*|/|G|)^{1/2}$ where G* and G refer to ${}^{37}\text{ClO}_3^-$ and ${}^{35}\text{ClO}_3^-$, respectively. The matrix elements were calculated from the formula given for the XY₃ (C_{3v}) grouping¹³ using the geometry of ClO₃⁻ reported in ref.¹⁴. The theoretical values (Table IV) are in a good agreement with the experimental values derived from the data of Table III.

The infrared spectra of the ClO_3^- anion in all the systems studied give evidence that this anion always adopts the site symmetry of the anion of the host crystal, which can be lower or higher than the site symmetry of the ion in the parent NaClO₃ and KClO₃ crystals themselves. This result is analogous to that obtained previously for tetrahedral XO_4^{2-} anions¹⁵.

REFERENCES

- 1. Wyckoff R. W. G .: Crystal Structures, Vol. II, p. 380. Interscience, New York 1964.
- 2. Náray-Szabó I., Neugebauer J.: J. Amer. Chem. Soc. 69, 1280 (1947).
- 3. Ozerov R. P., Rannev N. V., Pakhonov V. I., Rez I. S., Zhdanov G. S.: Kristallografiya 7, 620 (1962).
- 4. Smith A. J., Welch A. J. E.: Acta Crystallogr. 13, 8, 653 (1960).
- 5. Hamid S. A.: Z. Kristallogr. Kristallgeometrie, Kristalphys. Kristallchem. 137, 412 (1973).
- 6. Náray-Szabó I., Kálmán A.: Acta Crystallogr. 14, 791 (1961).
- 7. Sterzel W., Schnee W. D.: Z. Anorg. Allg. Chem. 383, 231 (1971).
- 8. Engstrom H., Frech R., Bates J. B.: J. Chem. Phys. 69, 5088 (1978).

Collection Czechoslovak Chem. Commun. [Vol. 50] [1985]

- 9. Nichols H. F., Frech R.: J. Chem. Phys. 71, 1616 (1979).
- 10. Nichols H. F., Frech R.: J. Chem. Phys. 72, 4437 (1980).
- 11. Bates J. B., Stidham H. D.: Solid State Commun. 16, 1223 (1975).
- 12. Bates J. B., Stidham H. D.: J. Phys. Chem. Solids 37, 183 (1976).
- 13. Nakamoto K.: Infrared Spectra of Inorganic and Coordination Compounds, p. 265. Wiley, New York, London 1963.
- 14. Burke-Laing M. E., Trueblood K. N.: Acta Crystallogr. B33, 2698 (1977).
- 15. Becher H. J., Friedrich F., Willner H.: Z. Anorg. Allg. Chem. 395, 135 (1973).

Translated by P. Adámek.